亚洲最新中文字幕aⅴ天堂|久久伊人婷婷|久久精品国产再热青青青|国产女人爽到高潮精品久久

<strike id="wkuaa"></strike>
  • <center id="wkuaa"></center>
  • <tbody id="wkuaa"></tbody>
  • 
    
  • <rt id="wkuaa"></rt>
    <dfn id="wkuaa"><dl id="wkuaa"></dl></dfn>
  • tags:
    當(dāng)前位置 : 首頁(yè) > 新聞中心 > 社會(huì)生活 > 正文

    為什么瘦腿是反人類(lèi)的?

    來(lái)源:本站作者:時(shí)間:2024-04-06 20:18:53點(diǎn)擊:

    大家好。

    大家都知道,目前市面上,牽扯到健身、健康的領(lǐng)域,都在不遺余力的給女性灌輸一種觀(guān)點(diǎn):粗腿不好看,要想盡辦法瘦腿。此外,還有關(guān)于消除假胯寬之類(lèi)的觀(guān)點(diǎn),也與瘦腿一樣,是反人類(lèi)的。

    此文是我在2021年三八女神節(jié)之際,以生理、生物學(xué)知識(shí)為立足點(diǎn),寫(xiě)下此文,作為送給廣大女性讀者的一份禮物。

    1. 瘦腿具有“四反”屬性:反智、反美學(xué)、反健康、反人類(lèi)。

    2. 女性的腿部和臀部堆積脂肪,呈現(xiàn)梨型身材,這是自然的法則,是上帝的設(shè)計(jì),是女性天生的性別特征,是天經(jīng)地義的,是理所當(dāng)然的。

    3. 腿部和臀部堆積的脂肪,賦予了女性美麗、健康和吸引力。

    4. 大量科學(xué)證據(jù)一致表明,腿細(xì)、腿部脂肪少,不健康,易得病,死得快

    在談?wù)撌萃鹊臅r(shí)候,我們必須要說(shuō)說(shuō)脂肪。按部位粗略劃分,脂肪可分為:

    1. 腰腹部/內(nèi)臟脂肪(被叫做上身脂肪、中央脂肪)

    2. 腿臀部脂肪(也叫四肢脂肪、下身脂肪)

    判定某人脂肪堆積部位,的常見(jiàn)方式是計(jì)算腰臀比(Waist to Hip Ratio,WHR)或腰腿比(Waist to Thigh Ratio,WTR)。

    顧名思義,腰臀比(WHR),就是腰圍除以臀圍。同理,腰腿比 (WTR) ,就是腰圍除以腿圍。

    例如,腰圍70CM,臀圍100CM,腰臀比就是70/100=0.7。很明顯,腰臀比越小,就顯得腰細(xì);腰臀比越大,就顯得腰粗。

    腰臀比或腰腿比越大,通常說(shuō)明上半身脂肪堆積多,也被叫做中心性肥胖、腹部肥胖等[21,22,23,24];腰臀比或腰腿比越小,通常說(shuō)明下半身脂肪堆積多。

    這兩類(lèi)都是脂肪,但它們存在很大差別。

    群體科學(xué)證據(jù)顯示[12,13,14,15,16,17,18,19,20,21,35,36,37,38,39,58,99],上半身脂肪多/上半身肥胖,是造成各種代謝綜合癥(如高血壓、高血脂、高血糖、胰島素抵抗、糖尿病、動(dòng)脈粥樣硬化、冠心。┑闹饕颉L貏e是對(duì)于亞洲人來(lái)說(shuō),更是如此[25,26,27,28]。

    Bing等人對(duì)5057人的研究表明,上半身脂肪堆積較多(腰腿比-WTR較大)的人群,體重較大、較為肥胖和缺少鍛煉,血脂/血壓/血糖較高,或可能有心血管疾病史。

    Earl等人對(duì)6277名美國(guó)人的研究表明,腰腿比與糖尿病和中心性肥胖密切相關(guān)。腰的相對(duì)粗、腿的相對(duì)細(xì)(WTR大)容易造成糖尿病和遭受后續(xù)并發(fā)癥影響,其他研究也支持這樣的結(jié)論[90,91,92,93]。

    許多醫(yī)學(xué)研究發(fā)現(xiàn),與體重指數(shù)(BMI)、腰圍和體脂率這幾個(gè)指標(biāo)相比,腰腿比(WTR)能同等的[101,102]、或是更好預(yù)測(cè)2型糖尿病[94,95,97,98,99]、缺血性心臟病[96]等。

    對(duì)于下半身脂肪來(lái)說(shuō)則不同。大量證據(jù)[31,32,33,34,40,41,42,43,44,81,82,83]表明,下半身脂肪多,或是大腿圍越粗[95],越能降低各類(lèi)疾病率(如糖尿病及其并發(fā)癥)。

    系列研究[115,116,117,118,119,120]觀(guān)察到,腰臀比(WHR)和腰腿比(WTR)是無(wú)關(guān)于體重指數(shù)BMI、無(wú)關(guān)于腰圍的糖尿病發(fā)病的重要獨(dú)立預(yù)測(cè)因子。

    換言之,對(duì)于這部分研究中的人群而言,哪怕體重指數(shù)大、腰圍相對(duì)大,但是只要臀圍和腿圍更大,有較小的腰臀比和腰腿比,糖尿病風(fēng)險(xiǎn)就低。

    Bando等人2006年研究了80名2型糖尿病患者的發(fā)現(xiàn),腰腿比越。ǹ梢岳斫鉃樵谕瑯拥难鼑孪鄬(duì)腿越粗),糖尿病病情控制得更好(糖化血紅蛋白—HbA1c值越越低)。

    CHOU等人2006年對(duì)臺(tái)灣糖尿病人的研究了也發(fā)現(xiàn),腰腿比(WTR)是一個(gè)非常好的指標(biāo),能充分反映糖尿病風(fēng)險(xiǎn),腰腿比較小的人,面臨的糖尿病和代謝疾病風(fēng)險(xiǎn)更小。

    醫(yī)學(xué)研究認(rèn)為,這是因?yàn)橥韧尾恐竞脱共恐镜拇x特性有所不同[45,46]。

    腰腹部脂肪更容易釋放出一種脂肪酸(非酯化脂肪酸—NEFA))進(jìn)入血液,可在肝臟處堆積、促進(jìn)脂肪肝形成[48,49,50,51,52],或是影響肝臟的糖代謝[55,56,85,86],以及 “危害”其他內(nèi)臟和心血管;

    相比之下,臀部和腿部的皮下脂肪層,是一個(gè)更安全的脂肪倉(cāng)庫(kù),也具有與腹部不同的代謝活性,因此能發(fā)揮 “脂肪緩沖” 的作用[84,85]。

    意思是說(shuō),進(jìn)食脂肪后,游離脂肪、NEFA等,更容易被臀部和腿部皮下脂肪所吸收[32,86,87,88],進(jìn)入血液的游離脂肪酸就較少。

    腿部和臀部脂肪,能對(duì)肝臟、胰腺、肌肉等器官起到一定的保護(hù)作用[47,48,49,50,51,52,53],或者至少不會(huì)拖健康的后腿,不會(huì)導(dǎo)致胰島素抵抗[54]。

    大腿和臀部脂肪相對(duì)多(WTR。┑娜擞懈】档难呛脱絒12,31,44,57]、更好的代謝指標(biāo)(更低的血漿胰島素和血糖耐受)[46,53,103,104]。

    有趣的是,Neil等人研究了2322人后發(fā)現(xiàn),大腿圍越大,內(nèi)臟脂肪越少。

    當(dāng)然,大腿不止包含脂肪,也包含肌肉。

    從理論上說(shuō),糖尿病跟肌肉吸收糖的能力有關(guān)系,因?yàn)榧∪庠叫,肌肉所能消耗和吸取的糖就越少,那么血糖就容易升高,越容易發(fā)生胰島素抵抗和糖尿病[29,30,32],醫(yī)學(xué)觀(guān)察到糖尿病人腿部的肌肉和脂肪比正常人更少[100]。

    很明顯,兩性之間存在脂肪分布的差異[58,73,74]。

    Vague等人1956年的研究,可能是最早證的文獻(xiàn),證明了男性更容易在上半身堆積脂肪[58]。

    之后有更多研究證明了男性相對(duì)容易發(fā)生腹部肥胖,進(jìn)而導(dǎo)致代謝類(lèi)疾病,如血漿蛋白紊亂[65,66,67]、胰島素抵抗、糖耐受受損等[68,69,70]。

    這些代謝疾病并不是小事,因?yàn)橛泻芏嘧C據(jù)表明,它們可能演變成心血管類(lèi)疾病,危及生命[75,76,77,78,79,80]、或是失明、腎衰竭等。并且,糖尿病人更容易感染新冠,肥胖者可能導(dǎo)致新冠藥物失效?傊秃軕K。

    相比之下,女性的心血管疾病率[59,60,62,63,64]和2型糖尿病幾率要低于男性,并且即便兩性的身體脂肪總量大致相等時(shí),也是如此[71,72]。

    也就是說(shuō),如Lemieux等人的研究發(fā)現(xiàn)的那樣,如果女性的2型糖尿病風(fēng)險(xiǎn)/糖耐受受損程度要達(dá)到跟男性相同的程度,她得要比男性更胖。

    這種疾病率差異,主要是因?yàn)閮尚缘闹痉植疾町愒斐傻摹E缘闹驹诟共枯^少[1,2,3]、在腿臀部更多;而男性更多在上身(腹腔、內(nèi)臟等)更多。

    例如Lemieux等人1986年對(duì)149人的研究發(fā)現(xiàn),如果脂肪總量相同,男性的內(nèi)臟脂肪量可能是女性的2倍[89]。

    這種兩性的脂肪分布差異,又主要是因?yàn)樾约に仡?lèi)型差異導(dǎo)致的:女性具有更高的雌激素水平。

    一份2006年的研究中告訴我們:雌激素水平越高,四肢的脂肪分布越多;雌激素水平越高,軀干脂肪越少;雌激素水平越高,軀干與四肢脂肪的比值越低。

    所以,雌激素通過(guò)減少內(nèi)臟脂肪/上身脂肪,對(duì)女性起到了保護(hù)作用[59]。

    更年期后,由于雌激素水平下降,女性的上身脂肪增多,腰臀比(WHR)、腰腿比(WTR)增大[4,5,6,7],心血管疾病率也逐漸增加到與男性類(lèi)似的水平[61]。

    有趣的是,如果給予更年期后的中老年女性更多的外源性雌激素,其腰腹部脂肪又會(huì)減少[3,8,9,10,11]。

    Berit等人在《英國(guó)醫(yī)學(xué)雜志》上發(fā)表了一項(xiàng)前瞻性研究[105],包含1436名男性和1380名女性。研究發(fā)現(xiàn),大腿圍與總死亡率、心血管疾病和冠心病獨(dú)立相關(guān)。

    "獨(dú)立" 的意思,可以理解為,不需要考慮其它因素。即便是瘦子,即便腰細(xì),腿圍小,還是增加了死亡率。

    該研究的貢獻(xiàn)在于,發(fā)現(xiàn)了一個(gè)腿圍的閾值,大約是60CM左右。

    這意味著,對(duì)于被研究的群體來(lái)說(shuō),低于60CM的大腿圍,早亡(沒(méi)活到當(dāng)?shù)胤N群平均壽命就死亡)、心血管疾病、冠心病的死亡率明顯增加。

    但是,如果腿圍大于這個(gè)值,上述風(fēng)險(xiǎn)也不再降低。

    大部分資料顯示,男性的理想體脂是15%左右,女性應(yīng)當(dāng)是25%左右。在這兩個(gè)體脂率下,生理功能正常,偏高或偏低都不太好。

    為什么女性的健康體脂比男性高?因?yàn)榕缘膬?nèi)臟脂肪少于男性,僅為男性的一半[89](全身總脂肪量相等的前提下)。

    所以,從這些數(shù)據(jù)我們可以看出,其實(shí)健身行業(yè)和女會(huì)員可能都對(duì)女性的體脂率要求過(guò)于嚴(yán)格,有點(diǎn)走極端的味道了:明明已經(jīng)很瘦,卻還要說(shuō)自己胖。

    當(dāng)然,男人也是如此,大家可以回想下,朋友圈和網(wǎng)絡(luò)上有多少年輕壯漢說(shuō)自己骨瘦如柴、或是手無(wú)縛雞之力的?

    這種謙虛,兩性都是一樣的。

    我們仔細(xì)想下,會(huì)發(fā)現(xiàn)一個(gè)顯而易見(jiàn)的悖論。

    目前似乎大多數(shù)女性健身者,都要使勁練臀,提升臀部肌肉,但卻對(duì)腿部避之不及。她們都想要瘦腿,卻從不說(shuō)瘦臀。

    明擺著的簡(jiǎn)單道理是,對(duì)女性來(lái)說(shuō),不管是臀部還是腿部脂肪堆積,都是雌激素的結(jié)果,雌激素導(dǎo)致細(xì)腰、粗腿、臀大。

    腿和臀部脂肪,明明師出同宗,為何待遇卻完全不同?

    在我看來(lái),產(chǎn)生這種雙標(biāo)觀(guān)念的原因,主要是相關(guān)從業(yè)機(jī)構(gòu)和從業(yè)者、媒體的宣傳和誤導(dǎo)。

    歷史反復(fù)證明,人類(lèi)是非常容易被洗腦的。遠(yuǎn)的不說(shuō),就說(shuō)二戰(zhàn)之前發(fā)生在德國(guó)的納粹崇拜、日本的神風(fēng)突擊隊(duì)等歷史事件,都?xì)v歷在目。

    很明顯,這主要是經(jīng)濟(jì)和從業(yè)道德等方面的問(wèn)題。

    在市場(chǎng)經(jīng)濟(jì)下,買(mǎi)方說(shuō)了算,服務(wù)是必須的、首要的;但是,健身機(jī)構(gòu)和教練還負(fù)有引導(dǎo)義務(wù):對(duì)客戶(hù)提出的目標(biāo)、方法、觀(guān)念等,當(dāng)中的不合理、不科學(xué)部分,進(jìn)行循序漸進(jìn)的糾正。

    所以,教練和健身機(jī)構(gòu),應(yīng)該是一種雙重身份:服務(wù)和引導(dǎo)。只服務(wù)不引導(dǎo),屬于職責(zé)缺位。

    不引導(dǎo)的原因,我想,可能是多方面的,包括欠缺糾正/引導(dǎo)的意識(shí)、業(yè)績(jī)壓力大、部分客戶(hù)強(qiáng)硬、教練和機(jī)構(gòu)自身的專(zhuān)業(yè)度不夠等等。

    在我看來(lái),這些問(wèn)題是可以去克服的,至少服務(wù)和引導(dǎo)之間的矛盾,是可以適當(dāng)?shù)钠胶獾摹?/p>

    我們團(tuán)隊(duì)(力訓(xùn)研究所)的教練,相對(duì)來(lái)說(shuō)更注重對(duì)客戶(hù)的引導(dǎo)和規(guī)勸,相當(dāng)多的女性客戶(hù)在認(rèn)可我們專(zhuān)業(yè)度的基礎(chǔ)之上,逐漸接受了相對(duì)科學(xué)的觀(guān)念,更重視合理的力量訓(xùn)練,而不是避之不及。

    對(duì)人類(lèi)而言,下半身的肌肉和脂肪,是健康和美的關(guān)鍵。

    下半身肥胖這句話(huà),對(duì)女性來(lái)說(shuō),本身就是個(gè)偽命題。

    因?yàn)榉逝,指的是不?yīng)堆積的脂肪;但是對(duì)于女性來(lái)說(shuō),脂肪在下半身的堆積,本來(lái)就是合理的、有益無(wú)害的,而這又是雌激素作用的結(jié)果。

    眾所周知,雌激素讓女性保持光澤的毛發(fā)和皮膚,還有全世界都喜歡的細(xì)腰。

    Devendra等人2002年的研究發(fā)現(xiàn),女性腰臀比帶來(lái)的吸引力和美感,不是基于特定文化、特定時(shí)代、特定國(guó)家和民族所固有的,也不是由現(xiàn)代西方世界的時(shí)尚引導(dǎo)或媒體所灌輸?shù),而是全人?lèi)通用的,大多數(shù)國(guó)家和地區(qū)都如此。

    “粗” 和 “細(xì)” 都是相對(duì)的,腰的細(xì)是相對(duì)于臀部和腿部的粗而言。

    市面上有許多唯利是圖的健身機(jī)構(gòu)、無(wú)良商家和個(gè)人,傳授各種所謂瘦腿的方法和動(dòng)作等,實(shí)質(zhì)上,是打著科普的名義坑蒙拐騙。

    因?yàn),所謂動(dòng)作瘦腿,根本就不現(xiàn)實(shí)。

    從生理上,依靠一些低強(qiáng)度、甚至是或者極低強(qiáng)度的力量訓(xùn)練動(dòng)作,或者是半自重動(dòng)作等,因?yàn)閺?qiáng)度和訓(xùn)練量都不夠,所以當(dāng)然不會(huì)有什么明顯的效果,基本上就是白練。

    當(dāng)然,動(dòng)了會(huì)比不動(dòng)好,但是這種小規(guī)模、低強(qiáng)度、消耗熱量小的動(dòng)作,對(duì)肌肉和脂肪都沒(méi)有什么影響。

    從性質(zhì)上說(shuō),這是一些無(wú)良商家滿(mǎn)足了一些小白和外行的盲目瘦腿心態(tài),所以會(huì)有市場(chǎng)。

    所謂有買(mǎi)賣(mài)就有殺害,有傻子就有騙子。

    十有八九,我預(yù)計(jì)有些人可能會(huì)說(shuō):我知道女性腿部脂肪多肌肉多更健康,可是這樣不美,大家覺(jué)得腿細(xì)了更好看。

    問(wèn)題在于:好不好看是誰(shuí)說(shuō)了算?

    如果說(shuō)是自己說(shuō)了算,又怎么知道自己的審美不是被灌輸、被賦予的?

    當(dāng)美的標(biāo)準(zhǔn)與自然的法則矛盾的時(shí)候,到底選擇哪一個(gè),是每個(gè)人的自由。

    但在我看來(lái),選擇以人為本,選擇以自然規(guī)律為主的審美,更具有合理性,因?yàn)榻】挡攀且磺械幕A(chǔ),這是非常簡(jiǎn)單的道理。

    本文結(jié)束。

    寫(xiě)在祝大家三八女神節(jié)之際,祝大家節(jié)日快樂(lè),感謝閱讀。

    1. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.

    2. Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983;72:1150–62.

    3. Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004;5:197–216.

    4. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11.

    5. Tremollieres FA, Pouilles JM, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol 1996;175:1594–600.

    6. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes Relat Metab Disord 2000;24:226–31.

    7. Bjorkelund C, Lissner L, Andersson S, Lapidus L, Bengtsson C. Reproductive history in relation to relative weight and fat distribution. Int J Obes Relat Metab Disord 1996;20:213–9.

    8. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.

    9. Espeland MA, Stefanick ML, Kritz-Silverstein D, Fineberg SE,Waclawiw MA, James MK, et al., Postmenopausal Estrogen-Progestin Interventions Study Investigators. Effect of postmenopausal hormone therapy on body weight and waist and hip girths. J Clin Endocrinol Metab 1997;82:1549–56.

    10. Sumino H, Ichikawa S, Yoshida A, Murakami M, Kanda T, Mizunuma H, et al. Effects of hormone replacement therapy on weight, abdominal fat distribution, and lipid levels in Japanese postmenopausal women. Int J Obes Relat Metab Disord 2003;27:1044–51.

    11. Arabi A, Garnero P, Porcher R, Pelissier C, Benhamou CL, Roux C. Changes in body composition during post-menopausal hormone therapy:a 2 year prospective study. Hum Reprod 2003;18:1747–52.

    12. 1 Bjorntorp P. Metabolic implications of body fat distribution.Diabetes Care 1991; 14: 1132±1143.

    13. Kissebah AH, Videlingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982;54:254-60.

    14. Abate N, Garg A, Peshock RM, StrayGundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 1995;96: 88-98.

    15. Planas A, Clará A, Pou JM, et al. Relationship of obesity distribution and peripheral arterial occlusive disease in elderly men. Int J Obesity 2001;25:1068–70.

    16. Kete I, Mariken, Volman M, et al. Superiority of skinfold measurements and waist over waist-to-hip ratio for determination of body fat distribution in a population-based cohort of Caucasian Dutch adults. Eur J Endocrinol 2007;156:655–61.

    17. Alexander JK. Obesity and coronary heart disease. Am J Med Sci 2001;321:215–24.

    18. Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women: risk within the ‘normal’ weight range. JAMA 1995;273:461–5.

    19. Goodpaster BH, Krishnaswami S, Harris TB, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 2005;165:777–83.

    20. Garrison RJ, Higgins MW, Kannel WB. Obesity and coronary heart disease. Curr Opin Lipidol 1996;7:199–202.

    21. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002;23:706–13.

    22. Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. JAMA 1998;280:1843–8.

    23. Rexrode KM, Buring JE, Manson JE. Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord 2001;25:1047–56.

    24. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. Int J Obesity 2001;25:652–61.

    25. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363: 157-163.

    26. World Health Organization (2017) Global Health Observatory (GHO) data.

    27. Nishi N (2015) Monitoring Obesity Trends in Health Japan 21. J Nutr Sci Vitaminol (Tokyo) 61 Suppl: S17-19.

    28. Tanaka H, Imai S, Nakade M, Imai E, Takimoto H (2016) The physical examination content of the Japanese National Health and Nutrition Survey: temporal changes. Asia Pac J Clin Nutr 25: 898-910.

    29. Seidell JC, Han TS, Feskens EJ, Lean ME. Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulindependent diabetes mellitus. J Intern Med. 1997;242:401–406.

    30. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: The Quebec Family Study. Am J Clin Nutr. 2001;74:315–321.

    31. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: The Hoorn Study. Diabetes Care.2004;27:372–377.

    32. Snijder MB, Visser M, Dekker JM, Goodpaster BH, Harris TB, Kritchevsky SB, et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia. 2005;48:301–308.

    33. Snijder MB, Zimmet PZ, Visser M, Dekker JM, Seidell JC, Shaw JE. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study. Int J Obes Relat Metab Disord. 2004;28:402–409.

    34. Kahn HS, Austin H, Williamson DF, Arensberg D. Simple anthropometric indices associated with ischemic heart disease. J Clin Epidemiol.1996;49:1017–1024.

    35. Sparrow D, Borkan GA, Gerzof SG, Wisniewski C, Silbert CK. Relationship of fat distribution to glucose tolerance: Results of computed tomography in male participants of the Normative Aging Study. Diabetes. 1986;35:411–415.

    36. Bergstrom RW, Newell–Morris LL, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men. Diabetes. 1990;39:104–111.

    37. Nagaretani H, Nakamura T, Funahashi T, Kotani K, Miyanaga M, Tokunaga K, et al. Visceral fat is a major contributor for multiple risk factor clustering in Japanese men with impaired glucose tolerance. Diabetes Care. 2001;24:2127–2133.

    38. McNeely MJ, Boyko EJ, Shofer JB, Newell–Morris L, Leonetti DL, Fujimoto WY. Standard definitions of overweight and central adiposity for determining diabetes risk in Japanese Americans. Am J Clin Nutr. 2001;74:101–107.

    39. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 1994;107:239– 246.

    40. Terry RB, Stefanick ML, Haskell WL, Wood PD (1991) Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism 40:733–740

    41. Snijder MB, Dekker JM, Visser M et al (2003) Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 11:104–111

    42. Snijder MB, Dekker JM, Visser M et al (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type-2 diabetes: the Hoorn Study.Am J Clin Nutr 77:1192–1197

    43. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C (2001) Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res 9:644–646

    44. Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM (2002) Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metab 282:E1023–E1028

    45. Rebuffe-Scrive M, Enk L, Crona N et al (1985) Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest 75:1973–1976

    46. Rebuffe-Scrive M, Lonnroth P, Marin P, Wesslau C, Bjorntorp P, Smith U (1987) Regional adipose tissue metabolism in men and postmenopausal women. Int J Obes 11:347–355

    47. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–1210

    48. Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type-2 diabetes mellitus. Ann N Y Acad Sci 967:363–378

    49. Tiikkainen M, Tamminen M, Hakkinen AM et al (2002) Liverfat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10:859–867

    50. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol.Metab 87:3023–3028

    51. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC (2003) Fatty liver in type-2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:E906–E916

    52. Kelley DE, Goodpaster BH (2001) Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes.Care 24:933–941

    53. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type-2 diabetes. Diabetes 51:7–18

    54. Goodpaster BH, Krishnaswami S, Resnick H et al (2003) Association between regional adipose tissue distribution and both type-2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26:372–379

    55. Bjorntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496

    56. Despres JP, Lemieux S, Lamarche B et al (1995) The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord 19(Suppl 1):S76–S86

    57. Terry RB, Stefanick ML, Haskell WL, Wood PD (1991) Contributions of regional adipose tissue depots to plasma lipoprotein concentrations in overweight men and women: possible protective effects of thigh fat. Metabolism 40:733–740

    58. Vague J: The degree of masculine differentiation of obesity: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease.Am J Clin Nutr 4:20-34,1956

    59. Lemer D J, Kannel WB (1986) Patterns of coronary heart diseases morbidity and mortality in the sexes: a 26-year followup of the Framingham population. Am Heart J 11:383-390

    60. Wingard DL, Suarez L, Barrett-Connor E (1983) The sex differential in mortality from all causes and ischemic heart disease. Am J Epidemio1117:165-172

    61. Witteman JC, Grobbee DE, Kok FJ, Hofman A, Valkenburg HA (1989) Increased risk of atherosclerosis in women after the menopause. BMJ 298:641-644

    62. Freedman DS, Jacobsen S J, Barboriak JJ et al. (1990) Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 81:1498-1506

    63. Larsson B, Bengtsson C, Bj6rntorp Pet al. (1992) Is abdominal body fat distribution a major explanation for the sex difference in the incidence of myocardial infarction? Am J Epidemio1135: 266-273

    64. Seidell JC, Cigolini M, Charzewska Jet al. (1991) Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 87:203-210

    65. Despr6s JR Moorjani S, Fefland Met al. (1989) Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 9:203-210

    66. Despr6s JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10: 497-511

    67. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54-59

    68. Despr6s JP, Nadeau A, Tremblay A et al. (1989) Role of deep abdominal fat in the association between regional adipose issue distribution and glucose tolerance in obese women. Diabetes 38:304-309

    69. Peiris AN, Sothmann MS, Hennes MI et al. (1989) Relative contribution of obesity and body fat distribution to alterations in glucose insulin homeostasis: predictive values of selected indices in premenopausalwomen. AmJ ClinNutr49:758-764

    70. Pouliot MC, Despr6s JP, Nadeau A et al. (1992) Visceral obesity in men: associations with glucose tolerance, plasma insulin and lipoprotein levels. Diabetes 41:826-834

    71. Despr6s JP, Allard C, Tremblay A, Talbot J, Bouchard C (1985) Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 34:967-973

    72. Krotkiewski M, Bj6rntorp P, Sj6strOm L, Smith U (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 72: 1150-1162

    73. Kvist H, Chowdury B, Gang~rd U, Tyl6n U, Sj6str0m L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48:1351-1361

    74. SjOstr6m L, Kvist H (1988) Regional body fat measurements with computed tomography-scan and evaluation of anthropometric predictions. Acta Med Scand [Suppl] 723:169-177

    75. Fager G, Wiklund O, Olofsson SO, Wilhelmsen L, Bondjers G (1981) Multivariate analyses of serum apolipoproteins and risk factors in relation to acute myocardial infarction. Arteriosclerosis 1:273-279

    76. Hamsten A, Walldius G, Dahlen G, Johansson B, De Faire U (1986) Serum lipoproteins and apolipoproteins in young male survivors of myocardial infarction. Atherosclerosis 59: 223-235

    77. Gordon DJ, Probstfield JL, Garrison RJ et al. (1989) Highdensity lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8-15

    78. Assmann G, Helmut S (1992) Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardio170:733-737

    79. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917- 1921

    80. Crouse JR, Parks JS, Schey HM, Kahl FR (1985) Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res 26:566-574

    81. Seidell JC, Han TS, Feskens EJ, Lean ME. Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulin-dependent diabetes mellitus. J Intern Med. 1997;242:401–6.

    82. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr. 2001;74:315–21.

    83. Lissner L, Bjorkelund C, Heitmann BL, Seidell JC, Bengtsson C. Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res. 2001;9:644–6.

    84. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia.2002;45:1201–10.

    85. Rebuffe-Scrive M, Enk L, Crona N, Lonnroth P, Abrahamsson L, Smith U, Bjorntorp P. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J Clin Invest. 1985;75:1973–6.

    86. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    87. Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, Brixen K, Andersen M. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab. 2009;94:4010–5.

    88. Piche ME, Lapointe A, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, Lemieux S. Regional body fat distribution and metabolic profile in postmenopausal women. Metabolism. 2008;57:110 1–7.

    89. Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Despr6s JP (1993) Sex differences in the relation of visceral adipose tissue to total body fatness. Am J Clin Nutr 58:463-467

    90. J.C. Seidell, A. Oosterlee, M.A. Thijssen, J. Burema, P. Deurenberg, J.G. Hautvast, et al., Assessment of intraabdominal and subcutaneous abdominal fat: relation between anthropometry and computed tomography, Am. J.Clin. Nutr. 45 (1987) 7–13.

    91. M. Ashwell, S. Chinn, S. Stalley, J.S. Garrow, Female fat distribution-a simple classification based on two circumference measurements, Int. J. Obes. 6 (1982) 143–152

    92. H.S. Kahn, Choosing an index for abdominal obesity: an opportunity for epidemiologic clarification, J. Clin. Epidemiol. 46 (1993) 491–494.

    93. W.H. Mueller, M.L. Wear, C.L. Hanis, J.B. Emerson, S.A. Barton, D. Hewett-Emmett, et al., Which measure of body fat distribution is best for epidemiologic research? Am. J.Epidemiol. 133 (1991) 858–869.

    94. D.K. Warne, M.A. Charles, R.L. Hanson, L.T. Jacobsson, D.R. McCance, W.C. Knowler, et al., Comparison of body size measurements as predictors of NIDDM in Pima Indians, Diabetes Care 18 (1995) 435–439.

    95. M.B. Snijder, J.M. Dekker, M. Visser, L.M. Bouter, C.D. Stehouwer, P.J. Kostense, et al., Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study, Am.J. Clin. Nutr. 77 (2003) 1192–1197.

    96. H.S. Kahn, H. Austin, D.F. Williamson, D. Arensberg, Simple anthropometric indices associated with ischemic heart diease, J. Clin. Epidemiol. 49 (1996) 1017–1024.

    97. Y.C. Chuang, K.H. Hsu, C.J. Hwang, P.M. Hu, T.M. Lin, W.K. Chiou, Waist-to-thigh ratio can also be a better indicator associated with type 2 diabetes than traditional anthropometrical measurements in Taiwan population,Ann.Epidemiol. 16 (2006) 321–331.

    98. L. Piemonti, G. Calori, G. Lattuada, A. Mercalli, F. Ragogna, M.P. Garancini, et al., Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals, Diabetes Care 32 (2009) 2105–2110.

    99. P.M. Janiszewski, J.L. Kuk, R. Ross, Is the reduction of lowerbody subcutaneous adipose tissue associated with elevations in risk factors for diabetes and cardiovascular disease? Diabetologia 51 (2008) 1475–1482.

    100. S. Heshka, A. Ruggiero, G.A. Bray, J. Foreyt, S.E. Kahn, C.E. Lewis, et al., Altered body composition in type 2 diabetes mellitus, Int. J. Obes. (Lond.) 32 (2008) 780–787.

    101. Greenlund KJ, Valde`z R, Casper ML, Rith-Najarian S, Croft JB. Prevalence and correlates of the insulin resistance syndrome among Native Americans. The inter-tribal heart project. Diabetes Care 1999;22:441–7.

    102. Li C, Ford ES, Zhao G, Kahn HS, Mokdad AH. Waist-to-thigh ratio and diabetes among US adults: the Third National Health and Nutrition Examination Survey. Diabetes Res Clin Pract 2010;89:79–87.

    103. Olsen DB, Sacchetti M, Dela F, Ploug T, Saltin B. Glucose clearance is higher in arm than leg muscle in type 2 diabetes. J Physiol 2005;565:555–62.

    104. Jen-Kuang Lee 1 , Cho-Kai Wu, Lian-Yu Lin, Chia-Lin Cheng, Jou-Wei Lin, Juey-Jen Hwang, Fu-Tien Chiang.Insulin resistance in the middle-aged women with "Tigerish Back and Bearish Waist".Diabetes Res Clin Pract. 2010 Dec;90(3):e85-7.

    105. Berit L Heitmann,1 2 Peder Frederiksen1.Thigh circumference and risk of heart disease and premature death: prospective cohort study.BMJ 2009;339:b3292.

    106. Frisch R.E., Body fat, puberty and fertility. Biol Rev Camb Philos Soc, 1984, 59 (2), 161–188,

    107. Jeukendrup A., Gleeson M., Sport nutrition. Human Kinetics, Champaign 2010.

    108. Aleksandra S, Jadwiga Pietraszewska, Anna Burdukiewicz, Justyna Andrzejewska.The differences in fat accumulation and distribution in female students according to their level of activity.University School of Physical Education, Wroc?aw, Poland.

    109. Lukaski H.C., Bolonchuk W.W., Hall C.B., Siders W.A., Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol (1985),1986, 60 (4), 1327–1332.

    110. Major-Go?uch A., Miazgowski T., Krzy?anowska-?wi niarska B., Safranow K., Hajduk A., Comparison of fat mass measurements in young, healthy, normal-weight women by bioelectric impedance analysis and dual-energy X-ray absorptiometry [in Polish]. Endokrynologia, Oty?o?? i Zaburzenia Przemiany Materii, 2010, 6 (4), 189–195.

    111. Evans J., Lambert M.I., Micklesfield L.K., Goedecke J.H.,Jennings C.L., Savides L. et al., Near infrared reactance for the estimation of body fatness in regularly exercising individuals. Int J Sports Med, 2013, 34 (7), 612–615

    112. Mala L., Maly T., Zahalka F., Bunc V., Kaplan A., Jebavy R. et al., Body composition of elite female players in five different sports games. J Hum Kinet, 2015, 45, 207–215

    113. Bu?ko K, Lipińska M., A Comparative Analysis of the Anthropometric Method and Bioelectrical Impedance Analysis on Changes in Body Composition of Female Volleyball Players During the 2010/2011 Season. Hum Mov, 2012, 13 (2), 127–131

    114. Marieke B Snijder, Jacqueline M Dekker, Marjolein Visser, Lex M Bouter, Coen D A Stehouwer, Piet J Kostense, John S Yudkin, Robert J Heine, Giel Nijpels, Jacob C Seidell.Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study.Am J Clin Nutr. 2003 May;77(5):1192-7.

    115. de Vegt F, Dekker JM, Jager A, et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA 2001;285:2109–13.

    116. Warne DK, Charles MA, Hanson RL, et al. Comparison of body size measurements as predictors of NIDDM in Pima Indians. Diabetes Care 1995;18:435–9.

    117. Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol 1997;145:614–9.

    118. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994;17:961–9.

    119. Ohlson LO, Larsson B, Svardsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985;34:1055–8.

    120. Lundgren H, Bengtsson C, Blohme G, Lapidus L, Sjostrom L. Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: results from a prospective population study in Gothenburg, Sweden. Int J Obes 1989;13:413–23.

    圖文推薦